Definitions and key facts for section 1.8

A transformation T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}. The set \mathbb{R}^{n} is the domain of T while \mathbb{R}^{m} is the codomain.
We use the notation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { and } T: \mathbf{x} \mapsto T(\mathbf{x})
$$

to denote that T maps elements of \mathbb{R}^{n} to elements of \mathbb{R}^{m}, and to denote that the vector \mathbf{x} is mapped to $T(\mathbf{x})$, respectively.
The vector $T(\mathbf{x})$ in \mathbb{R}^{m} is called the image of \mathbf{x} (under the transformation T). The set of all images is called the range of T.

A transformation T which maps each \mathbf{x} to the product $A \mathbf{x}$ using a fixed matrix A is called a matrix transformation.
In general, if A is an $m \times n$ matrix, then $\mathbf{x} \mapsto A \mathbf{x}$ is a matrix transformation with domain \mathbb{R}^{n} and codomain \mathbb{R}^{m}.

A transformation T is linear if

1. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T; and
2. $T(c \mathbf{u})=c T(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

Fact: If T is a linear transformation then

$$
T(\mathbf{0})=\mathbf{0}
$$

and

$$
T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})
$$

for all vectors \mathbf{u}, \mathbf{v} in the domain of T and all scalars c, d. Thus more generally, we have

$$
T\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}\right)=c_{1} T\left(\mathbf{v}_{1}\right)+c_{2} T\left(\mathbf{v}_{2}\right)+\cdots+c_{p} T\left(\mathbf{v}_{p}\right)
$$

for any linear combination consisting of vectors from the domain of T.

