Definitions and key facts for section 1.8

A transformation T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m . The set \mathbb{R}^n is the domain of T while \mathbb{R}^m is the codomain.

We use the notation

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 and $T: \mathbf{x} \mapsto T(\mathbf{x})$

to denote that T maps elements of \mathbb{R}^n to elements of \mathbb{R}^m , and to denote that the vector **x** is mapped to $T(\mathbf{x})$, respectively.

The vector $T(\mathbf{x})$ in \mathbb{R}^m is called the **image** of \mathbf{x} (under the transformation T). The set of all images is called the **range** of T.

A transformation T which maps each \mathbf{x} to the product $A\mathbf{x}$ using a fixed matrix A is called a **matrix** transformation.

In general, if A is an $m \times n$ matrix, then $\mathbf{x} \mapsto A\mathbf{x}$ is a matrix transformation with domain \mathbb{R}^n and codomain \mathbb{R}^m .

A transformation T is **linear** if

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T; and
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all **u** in the domain of T.

Fact: If T is a linear transformation then

$$T(\mathbf{0}) = \mathbf{0},$$

and

$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$

for all vectors \mathbf{u}, \mathbf{v} in the domain of T and all scalars c, d. Thus more generally, we have

$$T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2) + \dots + c_pT(\mathbf{v}_p)$$

for any linear combination consisting of vectors from the domain of T.